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A self-consistent theory is presented for aggregates of neutral molecules. According to the LCAO
Hartree-Fock formalism a set of effective Hartree-Fock equations for molecules in the aggregate is
derived. The molecular orbitals of each molecule are to be determined from the effective H-F equation
for the molecule in which the interactions between the molecule and the surrounding ones are included
as an intermolecular interaction field (molecular field). A self-consistent treatment leads to the molecular
orbitals which are self-consistent with the molecular field. By this method, the n-molecule problem
becomes n times of one-molecule problem.

Eine selbstkonsistente Theorie fiir Aggregate neutraler Molekiile wird entwickelt. Entsprechend
der LCAO-Hartree-Fock-Theorie wird eine Reihe effektiver Hartree-Fock-Gleichungen fiir die
Molekiile des Aggregats abgeleitet. Die Molekiilorbitale sind aus den effektiven H-F-Gleichungen
eines Molekiils zu bestimmen, wobei die Wechselwirkungen mit den Nachbarmolekiilen als inter-
molekulares Wechselwirkungsfeld (Molekiilfeld) beriicksichtigt werden. Die Molekiilorbitale werden
selbstkonsistent beziiglich des Molekiilfeldes berechnet. Nach dieser Methode wird das n-Molekiil-
problem zum n-fachen Einmolekiil-Problem.

Introduction

Since the LCAO Hartree-Fock equation for a molecule were derived [1, 2],
the molecular orbital theory including electron-electron interactions, which had
not been considered explicitly in the Hiickel theory, has been developed; in the
theory, both ab initio and semi-empirical calculations have often succeeded to
estimate the transition energies or many other electronic properties of molecules.

On the other hand, a considerable progress has been made in the theoretical
treatments for the electronic structures of molecular crystals [3-8] based on the
Heitler-London method. In the H-L method, the zeroth-order wave-function for
a crystal is expressed as an antisymmetrized or a simple product of the wave-
functions of isolated molecules. Moreover, in this method the intermolecular
interactions are introduced as perturbation to the Hamiltonian for the oriented
gas model in which the molecules do not interact one another. In most of the pre-
vious articles [3-16], the following approximate treatments have been often
taken:

(1) The wave-functions for the constituent molecules are assumed to be
orthogonal one another, or all the overlaps between the wave-functions of the
molecules are neglected.

(2) The exchange interactions between the molecules are often neglected in
the numerical calculation or even in the formulation.

(3) In calculating the transition energies and the intensities of real optical
transitions or other physical properties of molecular crystals, the intermolecular
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interaction terms are usually approximated as the dipole-dipole interaction terms,
or at best the quadrupole-quadrupole terms are also considered. The higher order
terms are neglected.

(4) As the transition dipoles the values determined from the experimental
oscillator strengths for the molecules are often used in the dipole-dipole approxi-
mation method. Even if the transition dipoles are calculated by the conventional
MO methods, the directions of the dipoles in the crystal are always assumed for the
molecules with a high symmetry such as benzene and coronene.

(5) Although the Davydov splittings of typical aromatic hydrocarbon crystals
have been calculated and compared with the experimental findings [5-16], the
spectral displacement?, called D in Frenkel’s and Craig’s notation, is often neg-
lected or at least not calculated directly from the theoretical method.

(6) The configuration interactions to be considered between the configura-
tions, which do not belong to the same irreducible representation in the free-
molecule, are often restricted a few.

In these respects more general and appropriate theoretical treatments should
be required?.

It has been considered as a good approximation method to introduce the
perturbation theory in the frame of the Heitler-London model as far as the inter-
molecular overlap is small. However, in the case of large molecules, the dimension
of molecule itself is often much larger than the nearest intermolecular distance?,
then this perturbation approximation method may not be appropriate one even
if the intermolecular overlap is small. Therefore, it may be advisable that the
electronic wave-function of the aggregate of large molecules should be described
as a more appropriate antisymmetrized whole electron wave-function instead of
the product of the wave-functions of the isolated molecules used in the previous
articles [ 3-16].

In this paper a self-consistent theory for molecular aggregates is developed in
which all the molecular orbitals can be determined self-consistently based on the
many electron Hamiltonian including the intermolecular interactions explicitly.
Once the SCF molecular orbitals for a molecular aggregate are given, we can
start from more appropriate zeroth-order wave functions expressed as anti-
symmetrized products of these orbitals.

In Section I a self-consistent method is presented for aggregates of neutral
molecules. In this method, each one-electron orbital for a molecular aggregate
can be described as a linear combination of atomic orbitals of a constituent
molecule like a usual MO, since each electron in the molecular aggregate may be
tightly bound around one of the molecules. Moreover, an antisymmetrized
product of the one-electron orbitals of all the molecules in the aggregate is taken
as an electronic configuration of the system. Then, according to the LCAO
Hartree-Fock formalism [1, 2] a set of effective Hartree-Fock equations for the

! This term is a measure of the change in potential energy of interaction between a molecule and
the surrounding molecules if this molecule is raised to an excited electronic state.

2 In the recent work by Tanaka and Tanaka [8], most of these approximate treatments are not
needed, and now their theoretical treatment seems to be one of the most acceptable ones.

3 In benzene crystal, the diameter of molecule is about 5 A, while the nearest intermolecular
distance is 2.75 A [17].
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molecules in the aggregate is derived, where the intermolecular overlap between
atomic orbitals is completely neglected. The one-electron orbitals of every mole-
cule are to be determined from the effective H-F equation for the molecule in
which the interactions between the molecule and the surrounding ones are included
as an intermolecular interaction field (molecular field). A self-consistent treatment
leads to the one-electron orbitals which are self-consistent with the molecular
field (self-consistent molecular field). By this method the n-molecule problem
becomes n times of one-molecule problem under the molecular field. Particularly
for molecular crystals the n-molecule problem is reduced to just one-molecule
problem under an equivalent molecular field.

Starting from these SCF one-electron orbitals (not from the SCF orbitals of
isolated molecules) the excited electronic states of molecular crystals are described
in Section II according to the Frenkel-Pierles method [18-21]. One of the im-
portant results in this section, which seems to be rather obvious, is that the con-
figuration interaction matrix elements between the ground electronic configura-
tion and the one-electron excitation ones are vanishing. Therefore, the ground
state can be expressed by the ground electronic configuration alone. Furthermore,
it will be shown that the calculations and the estimations of many physical pro-
perties, which are peculiar to molecular crystals and not found in an isolated
molecule, become facile using this method.

For the numerical calculations of real systems semi-empirical methods are
presented in Section III. At first, the n-electron approximation method is taken
for the studies of the electronic transitions. Next, the all valence electron treatment
is used to analyze the intermolecular interactions.

In Section IV two main problems of this theory are discussed; (1) to what
system the self-consistent molecular field method is applicable and (2) whether
the calculation in the real SCF procedure can converge or not.

I. Self-Consistent Molecular Field Method
1. Hartree-Fock Equation and the Molecular Field

According to the Born-Oppenheimer approximation [22], the total electron
Hamiltonian operator for the N-molecule system is expressed in the form;
dn Ne

ZV2+—Z——ZZZ (1)

i=1 r; j n=1gqg=1i=1 nql
2 . . (l.#J) -
where e”/r;; is the electrostatic repulsion between electrons i and j, Z,, is the

nucleus charge on the g-th atom in the n-th molecule, and R, is the distance
between atom ng and electron i. Electronic wave-functions for the n-electron
system will be constructed from normalized antisymmetrized product functions

f the type;
o e e p=  detl(d19) ($1 ) (629, @
]/ne!

where ¢; is the one-electron orbital and « or f is the spin function. Since each
electron in the molecular aggregate may be tightly bound around one molecule,

4 Although the extension to an open-shell case is not so difficult, a closed-shell case in each
molecule is only considered in this paper.



334 K. Ohno and H. Inokuchi:

the appropriate one-electron orbitals ¢; may be taken to be orthonormal linear
combinations of atomic orbitals y,,, on one molecule;

d)m = Z Cinqanqu H (3)
qn

where ¢, is the localized one-electron orbital on the n-th molecule corresponding
to the i-th MO of a molecule in the familiar LCAO-MO approximation and x,,,
is the u-th AO on the g-th atom in the n-th molecule. Because of the small overlap
between the molecules in molecular aggregates, a following approximation (com-
plete neglect of intermolecular overlap) may be taken®;

§ i Yo 4T = O i g 4 - 4)
Then, the partial orthogonality between the one-electron orbitals is obtained;
[ % bmidr =00, » &)

where g;;= 9, ; when the set of ¢, is properly determined. Using ¢,;, the ground
electronic configuration will be expressed in the scheme of Eq. (2) as follows;

occe
lpo = A H ¢nia ’ (6)
nic
where 4 is an antisymmetrization operator permuting electrons and ¢,,, is a
spin-orbital which is the product of ¢,; and the spin function « or . The electrons
are accommodated in turn into the lower orbitals as in the case of the usual MO
theory.

Under the condition, a;; =4, , the energy expectation value of the ground

electronic configurations is glvetlljby the formula;
=2Z + Z (2 nimj mmj) ’ (7)
where nimi
) (—— ri-g ) bull)d, ®
mql
mmj fjl ¢m(1) ¢nt(1) 11:11(2) d)m](z) dTldTZ » (9)
and
mmj j. § ¢n1(1) ¢m](1) :lr‘lj(z) ¢m(2) dTl d‘EZ . (10)
The condition, a;;=46; ;, leads to
z ChoiCingpn Spuv=1 (i=1n, and n=1, N)S, (11
pugv
where S} ,, is the overlap integral'
puqv anpu anv d‘L' (12)

5 This approximation is, on the other hand, based on the interpretation [23] that the atomic
orbitals used in the semi-empirical molecular orbital theory should be considered as the orthogonalized
atomic orbitals determined by the Lowdin’s method [24]. Therefore, as far as the intermolecular
overlap is not so large as an intermolecular bonding is made, this approximation may be valid, if the
atomic integrals, such as two-electron repulsion integrals, are evaluated semi-empirically using the
zero-differential overlap approximation.

6 The symbol, n =1, N, means that the n varies from unity to N. n, denotes the number of electrons
in the n-th molecule.
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To determine the coefficients, C,,,,, the variation principle is used to lead a

following equations; for the variation of C%,, (cf. Appendix),

Z Cinqv(F:uqv — &y S;uqv) 5C?:1pu =0 ’ (13)

q
where F,,,, is an element of the n-th Fock matrix;

F;ﬂqv =D+ Z Z Plygv [(npungv|mp ' mq'v')
m pa'q’v (14)
1 ) ’or
—3 (npumg'v'|mp’ wW'nqv)] .

P is a bond-order;

pugv
oce

P;#qv =2 Z C?;tpu Cinqv H (15)
h? zZ,. e
In — %k 1 V2 _ myq 1 1
pHGV _[anu( )( 2m Vl "%, qu,] )anv( )d‘cl ( 6)

and )

! 7 4 r AN 4 e
(npumgv|n' p wWm'q vy = [ { 25.(1) Xmgr(D) -

12
X:ﬁp’u’(z) Xm'q’v’ (2) d‘cl de .

I}, is the Coulomb integral when pu=gqv, otherwise a resonance integral.
(npumgv|n'p' W'm'q'v') is the electron repulsion integral. Because of the arbitrary
character of the variation set, a set of simultanious equations (Hertree-Fock

equations for a molecular aggregate) is obtained,
Z Cinqv(FZuqv - SniSZuqv) =0 (n = 17 N) (18)
qv

One of these equations (the effective Hartree-Fock equation for a constituent
molecule) is very similar to that of a molecule, but F},,, depends upon the coeffi-
cients of other molecules, C,,,,,(m = n), so that the equations (n=1,N) are not
independent of each other.

Although to solve the equations there arises a difficulty due to the non-linearity
of Cy,,, if the Fock matrix elements are estimated by a set of C,,,, assumed, the
simultaneous equation becomes linear and feasible and then the equations are
decoupled into seqular equations of the next form (the effective seqular equations
for constitutent molecules);

det|F? ., —¢,5%,.1=0 (n=1N). (19)

pugv puqv

(17)

Eq. (19) for the m-th molecule, which can be solved independently of other
equations (n#m), determines the one-electron orbitals belonging to the m-th
molecule. However, this equation differs from the similar equation for an isolated
molecule, since Eq. (19) includes the intermolecular interactions as a field (mole-
cular field). Thus, the concept of the molecular field is introduced.

The general procedure to obtain the SCF solution or self-consistent molecular
field is diagrammatized in Fig. 1. For the first step a set of C;,,, should be assumed.
For the n-th molecule the coefficients can be given from the Hiickel orbitals or the
SCF molecular orbitals of the free molecule. If all the coefficients for the molecules
in the aggregate are given, then all the Fock matrix elements (Eq. (14)) can be
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Hiickel MO or SCF MO
of isolated molecules

Assumed MO or starting MO

det/F" — eS8 =0

|

C n=1,N

n

convergence

Self-consistent solution

Fig. 1. Computational procedure to obtain a self-consistent solution

determined. Next, the seqular equation (Eq. (19)) for the n-th molecule (one-
molecule problem) can be solved separately to give the new coefficients for the
molecule. When all the equations are solved and a new set of the coefficients are
obtained, the new Fock matrix elements will be determined to solve the new
seqular equations. This procedure should be repeated until the cycle becomes self-
consistent.

As shown above, N-molecule problem is decoupled into N times of one-
molecule problem’. However, the one-molecule problems should be solved
simultaneously, so that if N becomes large the process will be infeasible.

In the case of the molecular crystals where all the molecules are equivalent
under the crystal symmetry operations in the ground state, the Fock matrices
(n=1, N) must be mathematically equivalent. Then, the N-molecule problem

7 Such decoupling is also derived when the one-electron orbitals in a crystal or a regular high
polymer are expressed as linear combinations of basis sets constructed from the Bloch type sum of
translationally equivalent atomic orbitals. In this case the problem is reduced to a set of one-unit-cell
problems [25-27]. In molecular crystals, however, electrons are considered to be tightly bound to or

localized on one molecule so that one-electron orbitals may be localized within a molecule rather than
delocalized over the whole crystal.
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reduces to just one-molecule problem under an equivalent molecular field. In
this case it is possible to omit the suffix n if the numbering of equivalent atoms
under the crystal symmetry operations are chosen to be the same?.

Furthermore, if the molecules in a crystal are located on the crystal lattice
points, the effective Fock operator should be invariant under the symmetry
operations of the crystal point group. Then the one-electron orbitals of the
molecule on the invarient lattice point must be the representations of the crystal
point group.

2.-A Simple Numerical Application

To examine whether the one-electron orbitals in a crystal are really deformed
from those of a free molecule, this self-consistent equivalent molecular field
method is applied to the typical aromatic hydrocarbon crystals. In the calculation,
the usual n-electron approximation is employed (Section IIL.1). For the intra-
molecular electron repulsion integrals the n-electron correlation effect is consider-
ed along with Little and Gutefreund’s method [28], and for the intermolecular
electron repulsion integrals the bare Coulomb potential is used.

In Table 1, the orbital energies of coronene which has D, geometry are shown.
For the free molecule there are several exactly degenerated orbitals. While, for

Table 1. Orbital energies of coronene

Free molecule Crystal Crystal field splitting
(eV) (V) (eV)

—16.0372 ay, —16.0799

—14.9829 e, —15.0298

—14.9829 ey —15.0186 0.0112

—13.6586 ey —13.6994

—13.6586 € —13.6983 0.0011

-13.3524 Ay —13.3937

—12.2191 by —12.2576

—12.1925 by, —12.2343

—11.9004 ey —11.9467

—11.9004 ey, —11.9391 0.0076

—10.7182 &5, —10.7600

—10.7182 €34 —10.7574 0.0026

- 4.6726 et, — 4.7146

— 4.6725 et, — 47113 0.0033

— 3.4525 ef, — 3.4988

— 3.4525 ef, ~ 3.4912 0.0076

— 33241 a¥, — 3.3622

— 3.2010 a%, — 3.2429

— 2.1383 b%, - 21798

— 1.9099 ef, — 1.9508

— 1.9099 ef, — 1.9495 0.0013

— 0.6868 e, — 0.7338

— 0.6868 ez, - 07227 0.0111
0.2895 b3, 0.2465

& There is an exception in Eq. (14). In electron repulsion integrals the suffix # cannot be omitted.
The possible cases are F, P, §, C, I, and &. Other impossible cases are ¢,; and y,,,,, etc.

23 Theoret. chim. Acta (Berl) Vol. 26
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the crystal the orbitals degenerated in the free molcule reveal the crystal field
splitting. The n-electron densities on the carbon network also show the difference
between the free molecule and the crystal. As shown in Table 2, the n-electron
distribution of the free molecule satisfies the Dg, symmetry, while that of the

Table 2. Electron densities and orbital coefficients of coronene

a b < d e f g h
1 A 0.9946 0.9960 0.0000 —0.0037 —0.3148 —-0.3144
2 1 1.0058 1.0073 —0.3109 —0.3109 —0.0028 0.0074
3 H 1.0058 1.0048 —0.1580 —0.1537 0.2679 0.2698
4 G 0.9946 0.9943 0.2727 0.2750 0.1575 0.1530
5 F 1.0058 1.0046 0.1531 0.1493 —0.2708 -0.2734
6 E 1.0058 1.0048 -0.1531 —0.1560 —0.2708 ~-0.2696
7 D 0.9946 0.9940 —0.2727 —0.2711 0.1575 0.1599
8 C 1.0058 1.0047 0.1580 0.1604 0.2679 0.2660
9 B 1.0058 1.0070 0.3109 03111 —0.0028 ~0.0001
10 J 0.9936 0.9942 0.0000 —0.0025 —0.2020 ~0.2013
i1 L 0.9936 0.9939 0.1749 0.1763 0.1010 0.0992
12 K 0.9936 0.9939 —0.1749 -0.1741 0.1010 0.1036
13 A 0.9946 0.9960 0.0000 —0.0037 —0.3148 —0.3144
14 I 1.0058 1.0073 —0.3109 —0.3109 0.0028 0.0074
15 H 1.0058 1.0048 —0.1580 —0.1537 0.2679 0.2698
16 G’ 0.9946 0.9943 0.2727 0.2750 0.1575 0.1530
i7 F 1.0058 1.0046 0.1531 0.1493 —0.2708 ~0.2734
18 E 1.0058 1.0048 —0.1531 —0.1561 —0.2708 ~0.2696
19 D’ 0.9946 0.9940 -0.2727 -0.2711 0.1575 0.1599
20 C 1.0058 1.0048 0.1580 0.1604 0.2679 0.2660
21 B’ 1.0058 1.0070 0.3109 0.3111 —0.0028 —0.0001
22 J 0.9936 0.9942 0.0000 —0.0025 —0.2020 —0.2013
23 L 0.9936 0.9939 0.1749 0.1763 0.1010 0.0992
24 K’ 0.9936 0.9939 -0.1749 —0.1741 0.1010 0.1036

2 Atomic position illustrated in Fig. 2.

® Atomic position in the crystal [29].

¢ m-electron densities of a free coronene molecule.

4 m-electron densities of coronene in the crystal.

¢ One of the highest occupied orbitals of a free coronene molecule.
f The next highest occupied orbital of coronene in the crystal.

® The other highest occupied orbitals of a free coronene molecule.
b The highest occupied orbital of coronene in the crystal.

Fig. 2. Carbon skeleton of a coronene molecule: the molecular axes M and L indicate the orientation
of the molecule in the crystal lattice [29]
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molecule in the crystal is deformed into D,, or even into C,, which is seen easily to
pick up the equivalent atoms. In the free molecule there are three groups of equi-
valent atoms, (1,4,7,13,16,19), (2,3,5,6,8,9, 14, 15,17, 18,20, 21), and (10, 11,
12, 22, 23, 24). Whereas in the crystals a crude grouping is as follows, (1, 13), (2, 9,
14,21),(3,5, 6,8, 15, 16, 18, 20),(4, 7, 16, 19), (11, 12, 23, 24), and (10, 22), which may
correspond to the D,, symmetry. If the minor differences are noted, only the C;
symmetry can be seen.

Another demonstration is the difference of the orbital coefficients. The highest
occupied orbitals of a free coronene molecule (e,, degenerated orbitals) are
compared with the highest and the next highest occupied orbitals of a molecule
in the coronene crystal (Table 2, where the degenerated orbitals of a free molecule
are symmetry-adapted to be the correct representations of Dy,). As can be seen
from Table 2, the orbital coefficients for the isolated molecule and those for the
crystal only differ by 1071-1073 However, the inclusion of these differences
yields remarkable contributions to the values of the CI matrix elements and the
transition moments. This, of course, affects the values of the excitation energies
and oscillator strengths.

In this example, coronene is a nonpolar molecule which is expected to produce
“fairly weak molecular field”. Therefore, if polar molecules such as heterocyclic
compounds are concerned, much more serious effects is expected on the molecular
orbitals in the crystal.

I1. The Excited States of Molecular Crystals

In this section, the excited states of molecular crystals are described. The
excited states are at first approximated by a single electronic configuration and
then configuration interactions are considered.

1. Ionized Configuration

When an electron is removed from the occupied orbital ¢,,,, the electronic
configuration is expressed as

Vrkn =A{1_‘[ G m} (20)
Considering the translational symmetry, the corresponding ionized state should
be expressed as

1 ik rm
B % Vﬁ € Pk
= ) 5

z I/N eik-rm lpmkﬂ

m

(k) 2y

where k is the crystal momentum, r,, is the position vector of the m-th molecule,
and N is the total number of lattice points. The expectation value of the energy for
w(k), E, (k), is written as

E(k)=E°—¢,. 22)

This equation shows that the Koopmans® thorem [30] holds as in the case of the
usual SCF MO theory.

23*
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2. Frenkel Exciton (One Molecule in Each Unit Cell)

The electronic configuration of one-electron excitation within a molecule

is given by .
Ykea, mla' = A 1_[ d)nicr * ¢mka' ¢mla’ . (23)
Then, the localized excitation configurations for singletand triplet are expressed as
1 .
1wmk, m = W (wmka, mloe — kaﬂ,mlﬁ) (Slnglet) (24'1)
and

1
3
Yo, mi = T (W ke, mta + Wi, mip)
'y 2 'y

Yok, it = Prnkt, mi (triplet) (24-2)
31Pmk,ml = Yok, mia -

According to the Frenkel-Pierles method [18-21], singlet and triplet Frenkel
excitons should be written as

1
1,3wk,l(k) = ZW elk~l‘m 1’3wmk,ml (25)

m

and the energies are
1’3Ek,z(k) =E+g—g — y otmmm
~

[j B0 1) 032 b d
2

—(ﬁ)J 9500 bual) < 3D b drydes| . 20
12

a\  |a:singlet
(b) B {b: triplet. @7

where

3. Charge-Transfer Exciton (One Molecule in Each Unit Cell)

Charge-transfer exciton should be expressed as the lattice sum of translationally
equivalent electronic configurations of electron transfer between two molecules.
When the electron transfer vector is x = r, — r,,, the corresponding charge-transfer
exciton may be written as

1 ik-»
23k, x) = 2'7\1\7 XLy e s (28)

where the lattice sum runs keeping r, —r,,=x and
11zl)mk,nl = A ]__I ¢nio‘ : (d);’kla ¢nlm - ¢r;kk ¢nlﬂ )/l/i}
P = A| [T e (B b+ s b)) 2|
nia _, (29)
31pmk,nl =4 H d)nia : ¢mk1a¢nlﬁ]

nic

3Ipndc,nl = A l—_[ ¢nia ' (br;kllf ¢nla} .

nioc
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The energies are given by

L3E, (k,x)=E°+¢ —¢g — ) komrm
185080 68 uQ b a@ it GO

(108D s 67D |

4. Davydov Splitting [3, 4] of Frenkel Exciton

In the real light absorption process, the momentum conservation law leads
to the selection rule;

k=0.

If k equals just to zero, the excited states of the crystal having more than one
molecule in each unit cell must be representations of the factor group. When the
number of molecules in each unit cell is ¢, the excited states corresponding to the
Frenkel exciton (*- %y, ;(0)) are expressed as

1
1.3 1,3
Sk, )= Vi " Vi, mst 1(5) 5 (31)
ms t
where s denotes a site in a unit cell and 6,(s) is a coefficient of j-th branch. The J,(s)

should be determined by solving the following secular equation and obtaining
the eigen-vectors.

det|A(k, D), 5, — Edq, | =0, (32)
where
Ak, D, = [ w*(k, 1), Hyp(k, 1), dv (33)
and .
U)(ka l)s1 = Z W wmslk,msﬂ . (34)

The energy eigenvalue of a Davydov branch, »E(k, I}, is also obtained from the
solution of the Eq. (32) as following,

Y3E (k) =E°+¢—g+ ), % 0(s") 13 M,y s (K, ) (3%5)
and i
WM ) = = § [ $50) Sprin()— Bt $p2) dy d
5 22 (36)
(o) 119100 a1 651402 )

Then, Eq. (19) leads to the Davydov splitting between the j-th branch and the j'-th;
Ak, Dy =3 [(@(s) —8; (N X My ymelk, )] (37)
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5. Configuration Interaction between Excitons

Although the excited states has been described as y,(k), y, ;(k), and v, ,(k, x),
this approximation may or may not be good to the total wave-function (k) for
an actual electronic state i of the crystal. In case for which a combination of
several single exciton configurations is needed, a configuration interaction calcula-
tion should be performed by carrying out a linear variational calculation with
yy1(k, x) (including (k) and y, (k) in the symbol) as starting functions:

(k) = Zay (K, x); Yk, x), (38)
determining the energy and the coefficients g, ,(k, x); by solving a seqular equation
det | AR, ks — Ouax v EI=0 (39)

where )
AR orx = § 91, x) Hye (K, ) do. (40)

In this configuration interaction scheme, the interactions between different k and
also between different terms are neglected.

6. Configuration Interaction Between Ionized Configurations

As in the SCF theory of one molecule, the CI matrix elements between the
ionized configurations also vanish;

§ 2pE(k) H?p (k) dv=0 (k#Kk). (41)

7. Configuration Interaction Between the Ground Electronic Configuration
and One-Electron Excitation Configurations

The CI matrix elements between the ground electronic configuration and one-
electron excitation configurations are also vanishing;

S WO HY i s a(K) dv=0. (42)

Therefore, Brillouin’s theorem [31] holds in this theory. In other words, exciton
states do not mix with the ground one. This is one of the most important points
of this theory, since the ground state can be expressed purely as the ground
electronic configuration.

8. Davydov Splitting and Configuration Interaction

If more than one molecule are there in a unit cell, it is easy to consider the
configuration interactions. The Davydov splitting is obtainable by solving

det i L ?Aklx,k’l’x' - 5klx,k’l’x'E‘ =0 > (43)

Where 1,3 1,3 1,3 1y
S ke = f ’ Wj(k, LxyH" l.Pj(kf U x)dv, (44
b 31~Pji =zh? aji(ka Lx)* 31Pj(ka Lx), (45)

and v 31pj(k, I, x) are the solution of Eq. (32) or its simple version with x #0. It
should be noted that the configuration interactions between different Davydov
branches are vanishing and then the excited states are labeled by branch number j
and another quantum-number i.
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9. Characteristics of This Theory

When the descriptions of the electronic states given above are appropriate
for the actual molecular crystals, the calculations and estimations of following
physical properties of molecular crystals become facile. (a) Stabilization energy of
a molecule in crystallization; according to the vanishing character of the CI
matrix elements between the ground electronic configuration and one electron
excitation configurations, if the configuration interactions with two-electron
excitation configuration and others are neglected, the stabilization energy of a
molecule when it is brought into the crystal from vacuum (crystal lattice energy)
can be calculated from the total energy of an isolated molecule and the total
energy of the ground electronic configuration of the crystal. The former is easily
obtainable by solving the conventional one-molecule Hartree-Fock equation
and the latter also by solving the effective one-molecule problem. (b) Spectral shifts.
{c) Removal of electronic degeneracy (crystal field splitting of the degenerated
states). (d) Violation of selection rules (allowance of the forbidden transition of the
isolated molecule in the crystal). (¢) Crystal field mixing (configuration interaction
between the configurations which do not belong to the same irreducible representa-
tion in an isolated molecule). (f) Removal of the arbitrary character of the direction
of the transition moment of a high symmetry molecule such as benzene and
coronene; once the SCF orbitals for the ground electronic configuration are
obtained, these properties from (b} to (f) are determined from the eigen-values
and eigen-vectors of Eq. (39). Although in the usual calculation of Davydov
splitting the direction of the transition moment of a high symmetry molecule in a
crystal is assumed and the number of configurations for CI calculation are usually
limited a few [32], by this method the assumption is not needed and CI calculation
can be carried out as in the case of a molecule, because the CI matrix elements
are considerably simplified. Therefore, from the solution of the simple secular
Eq. (32) or {43) it is hopeful to get more reliable results in the calculation of the
Davydov splitting and the polarization of each Davydov branch.

II1. Semi-Empirical Methods

In this section semi-empirical treatments are presented, because the ab initio
calculation may not be feasible in a large system. At first z-electron approximation
is taken to calculate the electronic transition energies and their oscillator strengths.
Next, all valence electron treatment is used to study the intermolecular inter-
actions.

1. n-Electron Approximation

If attention is paid to the properties of mobile electrons of the system (for
example, electronic spectra of aromatic hydrocarbons), the usual n-electron
approximation may be taken. Within this limitation an extension of the conven-
tional Pariser-Parr method may be an appropriate method to test this theory.
Now, the following approximations are taken.
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(a) Zero-Differential Overlap Approximation

Using zero-differential overlap (ZDO) approximation, the electron repulsion
integrals of Eq. (17) vanish unless they are one center or two center Coulomb
repulsion integrals;

(npn' p'\mgm’'q’) = 6y, 4 6, py Oy O (46)

m,m 9,4 Vnpmg

and

ynpmq = j.j. X:‘p(l) an(l) “2 X;l:nq(z) qu(z) dTl dTZ . (47)

eZ
Fy
(b) Pariser Approximation [33]

According to Pariser approximation one center Coulomb repulsion integrals
become,
I, —A

ynpnp= np np >

(48)

where I,, and A4,, are the ionization potential and the electron affinity of p-th
atom in the n-th molecule, respectively.

(c) Two Center Coulomb Repulsion Integrals

Two center Coulomb repulsion integrals, y,,,,, are evaluated by Pariser-Parr
{34] or Nishimoto-Mataga [35] approximation.

(d) Coulomb Integrals

Starting from Goeppert-Mayer-Sklar approximation [36] and neglecting all
the penetration integrals, Coulomb integrals, I}, are expressed as

Iy =Wy — Z,Vnpmq > (49)
mg

where — W, is the ionization potential of the valence state of np-th atom and the
summation is taken over the whole system except mq =np.

(e) Resonance Integrals

As in the case of usual methods, resonance integrals, I, (p # q), are considered
to be empirical parameters. They should be determined to reproduce one-molecule

properties.
From the approximations, (a) and (d), the Fock matrix elements are written as
(diagonal) F;p = VVnp + Z (PZ:I - 1) ynpmq - %(ng - 2’) Vnpnp (50'1)
mq
and
(off-diagonal) B =T = 5P Vuong » (50-2)

where PJ; is the n-electron density on g-th atom in the m-th molecule;

oce

pPr =2 Z CtpCing- (51)
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It should be noted that from the ZDO approximation the excitation energy of
a single Frenkel exciton or charge transfer exciton is expressed as

1’3Ek,l(k’ x) - EO =& —& — Z Clﬂ:n+xpclm+xp

rq

2 T
Clikchkmq’))m+xpmq+ (0) Z elk {rm m) (52)

pam’

% %
C'lmp Ckmp Ckm'q Clm/q ympm'q 5x, 0"

This equation shows that only the singlet Frenkel exciton has non-zero bandwidth
as far as the ZDO approximation is valid. This feature agrees well with the experi-
mental results [37] from which the bandwidth of triplet exciton is expected to be
much smaller than that of singlet exciton, however, in order to calculate the band-
width of triplet exciton the ZDO approximation should not be used.

In the frame of the ZDO approximation, the configuration interaction matrix
clements are written as

— % *
A(k)klx,k’l’x’ - Z Clm+xp Cl’m+xp Ck’chkmq ’ym+xpmq§x,x’

pq

2 .
k- (rmy —¥m
+ (0 Z el = r )Cl*mp Ckmp Clzk’m’q Cl’m’q ’Vmpm'qéx,x’ 5::,0 .

pqm’

(53)

Eq. (53) reveals that the non-zero interactions only occur between Frenkel excitons
and also between charge-transfer excitons, and the k-dependence appears only in
the case of singlet Frenkel excitons. It should be noted that this vanishing character
of the configuration interaction matrix elements extremely reduces the effort
to calculate the electronic states; it is not needed to consider charge-transfer
excitons when calculating Frenkel exciton states, though the mixing of C-T
excitons with Frenkel exciton states has been previously considered [6, 38-40].

2. All Valence Electron Treatment

In order to discuss the total energy of the system, it may be appropriate to use
all valence electron treatment following the CNDQ (complete neglect of differen-
tial overlap) method proposed by Pople, Santry, and Segal [41, 42]. The expres-
sions for the Fock matrix elements and for the total energy of the system are obtain-
ed as in Egs. (57) and (59), respectively, according to the following approximations;

I;upv = Wnpué,u,v - Z, Unp,n’p’ 5u,v (p = Q) ’ (54)
n'p

I;uqv = ;q ;uqv (p #* Q) s (55)

(np:un/p,:u, I mqvm’qlvl) = ’Vnpmq 5np/4,n’p'u’ 5mqv, mq'v s (56)

where W, f, and y are the empirical parameters and —U,, ,, is a parameter
representing the potential energy of an electron on the np-th atom under the
potential of the core of the n'p’-th atom.

Fock matrix elements; for p=q and u=v

F;upu = VVnDu +(PZ - %P;upu) Vupnp + Z (PZ’ Ynpwp Unpn’p’)ﬂ (57'1)
n'p
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for p=g and u#v

F;uqv = 2Ppuqv ynpnp s (57'2)
and for p#gq
puqv ﬁpq puqy ZPpuqv Vnpng » (57'3)
where P is the electron density on the p-th atom in the n-th molecule,
: P - ZPPﬂPﬂ (58)
The total energy of the system is wrltten as
Eiy= Z [Z Ppuzm npu 22 (Ppup/u pvpv 3 P;upvz) Vrpnp
np | n
+ z Z z(ﬁZq S;#qv ;MQ" IPZ#‘IVZ y"P"‘l) (59)
(p?&q)
+ % Z , (Z"PZ"'P’ ez/Rnpn’P P; np,n'p P;” Un'p’,np +P;P;l"ynpn'p‘) >
(npg&n?p’)

where R, is the distance between atoms, np and n'p’. The first term of Eq. (59)
represents the atomic energies and the second term the binding energies of the
bond formation. To clarify the physical meaning of the third term of Eq. (59) it is
rewritten as

% z (E(l)npn’p' + E(z)npn'p’ + E(z)n’p’np + E(3)npn’p’) °

npn’'p’
(np#n'p’)
where
E(]-)npn/p’ = (PZ - an) (PZI’ - Zn'p’) ynpn’p’ s (60'1)
E(2)npn'p' = (P; - an) (Zn’p’ ’ynpn'p' - Unp, n’p’) (60'2)
E(3)npn’p’ = anZn’p' ynpn'p’ + anZn’p' eZ/Rnpn’p Z Unp n'p Z Un p,np* (60'3)

E(1) is the static Coulomb interaction between the net charges on the atoms,
which involves not only the usual electrostatic interaction between the unperturbed
net charges as they exist in the isolated molecules but also the usual polarization
effect and even higher-order effects.

E(2)pny 18 interpreted as the interaction between the net charge on the np-th
atom and the neutral »'p’-th atom.

E(3),w TEpresents the interaction between the neutral atoms, np and n’ p

In the CNDO/2 parametrization for U, ., (Uppwp =Z iy Vupr W) E(2) s
vanishing and E(3) becomes Z,,Z,,,(€*/R,pn  — Vupwy) Which is repulsive in the
usual parametrization of y. While, E(2) and E(3) can be attractive from the point
of view of their physical meaning: E(2) should be replaced by the interaction
between the net charge and the induced dipole on the neutral atom (which is of
the form — % e2a,/2R%,)® and E(3) should be replaced by “van der Waals inter-

. Co 3 LI
action” between the neutral atoms (which is of the form — ——12 o, a,/R$,)°

2 L+1,

except for very small distance.

° g is the net charge, I is the ionization potential, and « is the polarizability.
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So long as the heat of formation of an isolated molecule is concerned, these
attractive terms may be negligible. When the intermolecular interaction is taken
up, however, these terms should not be neglected, which may be seen very clearly
when interacting energies between two rare gas atoms are approximated in this
way: the lack of the dispersion energy results in the absence of an attractive
minimum. Therefore, we propose one of the most simple treatments as follows;

(A) For the Fock matrix elements and E(2), CNDO/2 approximation (U,
=ZpVupnp) 1S Used 0.

(B) For the intramolecular interaction terms of E(3), CNDQO/2 approximation
or MINDO/1 expression (the latter is of the form Z, Zz(e*/R,;z
~ 8) €Xp(—o45R 45)) [43] is used.

(C) For the intermolecular interaction terms of E(3), the pair-wise potential
[44,45], A/R'*— B/R® or Aexp(—aR)— B/R® is used.

Among the above parameters for the all valence electron treatment, the same
parameters used for the isolated molecules may be available except for the inter-
molecular electron repulsion integrals 7,,,, (##n) and the parameters of the
pair-wise potential.

According to this approximate treatment, the intermolecular interaction is
decomposed into three parts; (1), molecular energy shifts by electron redistribution
(positive)*?, (2) static Coulomb interactions between the net charges modified
through an SCF procedure, which involves not only usual electrostatic energy
but also the polarization energy (negative), (3), dispersion (or London) energy and
intercore repulsion energy (negative under the appropriate location of the mole-
cules). Among these parts the first two ones can be estimated directly from the
electron distribution determined by this SCF method, and the calculations based
only on the pair-wise potential can be corrected easily from the two parts, (1)
and (2).

p,n'p’

IV. Discussion
1. Applicability of the Self-Consistent Molecular Field Theory

As indicated in Section III, Brillouin’s theorem holds in this theory. Therefore,
it is clear that the ground electronic configuration does not mix with one-electron
charge-transfer configurations, and then the charge-transfer resonance [46, 47]
does not contribute to lowering the ground state energy. This is due to the following
two assumptions; one-electron orbitals are expressed as the linear combination
of atomic orbitals on one molecule and the intermolecular overlaps are neglected.
As far as these two assumptions are used and more than one-electron excitation
configurations are not considered, this theory should be only applicable to the

1% In the calculation of hydrogen bond, the induction term E(2) may play an important role.

11 In Eq. (59) the first and second terms, and the third term for n=n' represent the molecular
energies. Although these terms are the same expression of the molecular energies as that of the system
of isolated molecules, the electron distribution of the molecules in the aggregate will be different from
that of isolated molecules. Furthermore, the equilibrium positions of nuclei in the former may be
distorted from those in the latter. Therefore, the molecular energies in the aggregate should be shifted
from those in the isolated system. This molecular energy shifts may be positive, since the molecular
energies are minimal in the isolated system.
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systems in which each molecule is almost purely neutral or almost purely ionic'?,
and not applicable to the systems of intermediate charge-transfer’?.

Furthermore, if an intermolecular overlap is too large to neglect, there should
be an intermolecular bonding, and then it is not appropriate to use the localized
one-electron orbitals on a molecule. Therefore, this theory is only applicable
to the system in which there is no large overlap or no chemical bonding between
the molecules.

2. Problems Arising from Convergence

On the numerical application, there are two convergence problems peculiar
to the SCF calculation on infinite systems'® The first is associated with the
divergence of the integral sums over an infinite lattice. When the attractive terms
and repulsive terms are summed separately in the Fock matrix elements, both
of the partial sums are divergent. If these two sums are combined, the resulting
elements are at best conditionally convergent. More pricisely, the divergence
arises from the infinite sums of the integrals which diminish not more rapidly
than 1/r%, therefore, the condition of convergence is due to the process of the next
sum in the Fock matrix elements (Eq. (50));

Z (P;’ - Zn’p’) ynpn'p' .

oy’ Enp)
If this sum is taken over the charges on a molecule and then over those on another
molecule, this procedure may lead to convergence.

Although there is no clear proof of this prediction, it is very hopeful, since the
electric field induced by a neutral molecule in the distance is in the first approxima-
tion to be that by the permanent dipole of the molecule. Furthermore, if many
electron correlations are included in y, y may be a dielectrically screened Coulomb
potential and the value of y may reduce much more rapidly with r than that of
bare Coulomb potential.

The second problem is associated with the infinite number of SCF equations,
Eq. (18). Although the SCF procedure cannot be done in real computation, it is
important to know what number of equations to be solved in order to obtain

12 To apply this theory to almost purely ionic radical salt crystals an open-shell treatment is
needed.

13 Even if the intermolecular charge transfer is not neglected, this theory is applicable to the
special systems in which the intermolecular charge transfer chains do not extend over the fairly large
region of a hundred molecules, a thousand molecules, or all over the crystal. For a simple example, two
interacting molecules such as an electron donor-acceptor pair or a hydrogen-bonded dimer in the
aggregate are considered to be “one molecule” so that the one-electron orbitals may be expanded in
the atomic orbital bases of these two molecules. In such a case, this SCF theory is applicable to it with
no modification.

14 Another infinite sum is needed on calculating excitation energies [15]. In Eq. (52) the lattice
sum for a Frenkel exciton with k =0 becomes

Z Z C;kmp Ckmp C;ckm’q Clm’q ympm’q N

m pq
The convergence character of this sum may be seen as the same way as the first problem because
CtpCiomp a0d Cf,,, Cy,yr, can be interpreted as the charge on the mp-th atom and that on the m'g-th
atom, respectively.
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sufficient convergence. This question is closely correlated with another one, what
number of terms are to be summed in the Fock matrix elements. If the long-range
intermolecular interactions can be neglected, the SCF orbitals may be determined
by the short-range terms. Thus, it can be concluded that as far as the convergence
of the sum of Fock matrix elements are fulfilled in fairly short-range, the number
of secular equations to be solved becomes finite and sufficiently small for real
computation.

In molecular crystals, the second difficulty disappears automatically because
of the effective one-molecule problem under the equivalent molecular field.
Moreover, the first one is also removed: the well-known methods for the evaluation
of Madelung sums [48, 49] are available, since the translational symmetry makes
it possible to replace the lattice sum by the Fourier-integral or the reciprocal
lattice sum.

The authors express to Prof. Y. Harada for useful suggestions.

Appendix

The energy of the ground e¢lectronic configuration is expressed as follows in
terms of the orbital coefficients and atomic integrals defined in Section L
0ocec
0
E°=2 Z Z C?;pu Cimqu;uqv
ni pugv
oce
+ Z Z (ZC?;W Cinqv ;’kmp’u’ ijq’V’)

nimj puqvp'u'q’v’
-[(npungv|mp' y'mq'v) —3(npumq'v'|mp' W'ngv)] .

According to the variation principle, the following equation should be fulfilled
for an arbitrary variation set of the orbital coefficients;

P (EO -y 2sm.> =0,

where the variation parameters &, are introduced based on the orthogonality
conditions (Eq. (11)). For the variation of C¥_, Eq. (13) can be easily derived.

inpps

References

. Roothaan,C.C.J.: Rev. mod. Physics 23, 69 (1951).

. Hall,G.G.: Proc. Royal Soc. (London) A 205, 541 (1951).

. Davydov,A.S.: J. exp. theoret. Physics (USSR) 18, 210 (1948).

. — Theory of molecular excitons. Translated by M. Kasha and M. Oppenheimer, New York:
McGraw-Hill Book Company 1962.

. Craig,D.P.: J. chem. Soc. 1955, 2302.

. Tanaka,J.: Progr. theoret. Physics (Kyoto) supple. 12, 183 (1959).

. McClure,D.S.: Solid State Physics 8, 1 (1962).

. Tanaka, M., Tanaka,J.: Molecular Physics 16, 1 (1969).

. Craig, D. P., Walmsley,S. H.: The physics and chemistry of organic solid state. New York: Inter-
science Publishers 1963.

10. Fox,D., Schnepp, O.: J. chem. Physics 23, 767 (1955).

11. Wolf,H.C.: Solid State Physics 9, t (1959).

12. Craig,D.P., Walmsley, S. H.: Molecular Physics 4, 113 (1961).

P

NoRE- RS B NV



350 K. Ohno and H. Inokuchi: Self-Consistent Molecular Field Theory

13. — Advances in molecular spectroscopy, Vol. 1. New York: Pergamon Press 1962.

14. Jortner,J., Rice,S. A, Katz,J. L., Choi,S.: J. chem. Physics 42, 309 (1965).

15. Silbey,R., Jortner,J, Rice,S. A.: J. chem. Physics 42, 1515 (1965).

16. Tanaka,J.: Bull. chem. Soc. Japan 38, 86 (1965).

17. Cox,E.G., Cruickshank,D. W.J., Smith,J. A.S.: Proc. Royal Soc. (London) A 247, 1 (1958).

18. Frenkel,J.: Physic. Rev. 37, 17 (1931).

19. — Physic. Rev. 37, 1276 (1931).

20. Peierls,R.E.: Ann. Physik (5) 13, 905 (1932).

21. Frenkel,J.: Physik. Z. Sowjetunion 9, 158 (1936).

22. Born,M., Oppenheimer,J.R.: Ann. Physik 84, 457 (1927).

23. Fischer-Hjalmars,I.: Adances in quant. Chemistry 2, 25 (1965).

24. Lowdin,P.Q.: J. chem. Physics 18, 365 (1950).

25. Del Re, G., Ladik, J.: Physic. Rev. 155, 997 (1967).

26. Harris, F. E.,, Monkhorst, H.J.: Physic. Rev. Letters 23, 1026 (1969).

27. O’shea,S., Santry,D.P.: J. chem. Physics 54, 2667 (1971).

28. Gutfreund, H., Little, W. A.: Physic. Rev. 183, 68 (1969); J. chem. Physics 50, 4468 (1969).

29. Robertson,J. M., White,J. G.: J. chem. Soc. 1945, 607.

30. Koopmans, T.: Physica 1, 104 (1933).

31. Brillouin,L.: Actualités sci. et ind. No. 159 (1934).

32. Tanaka,J.: Bull. chem. Soc. Japan 38, 86 (1965).

33. Pariser,R.: J. chem. Physics 21, 568 (1953).

34, — Parr,R.G.: J. chem. Physics 21, 767 (1953).

35. Nishimoto, K., Mataga, M.: Z. physik. Chem. (Frankfurt) 12, 335; 13, 140 (1957).

36. Goeppert-Mayer, M., Sklar, A.L.: J. chem. Physics 6, 645 (1938).

37. Nieman, G.C., Robinson, G.W.: J. chem. Physics 38, 1928 (1963).

38. Lyons,L.E.: J. chem. Soc. 1957, 5001.

39. Merrifield, R.E.: J. chem. Physics 34, 1835 (1961).

40. Webber,S., Rice,S. A, Jortner,J.: J. chem. Physics 41, 2911 (1964).

41. Pople,J. A, Santry,D.P., Segal, G. A.: J. chem. Physics 43, S129 (1965).

42, — Segal, G.A.: J. chem. Physics 43, S136 (1965); 44, 3289 (1966).

43. Dewar,M.].S., Klopman,G.: J. Amer. chem. Soc. 89, 3089 (1967).

44. Lenard-Jones,J.: Proc. Royal Soc. (London) A 106, 463 (1924).

45. Buckingham,R.A.: Proc. Royal Soc. (London) A 168, 264 (1938).

46. Mulliken, R.S.: J. Amer. chem, Soc. 71, 811 (1952); J. physic. Chem. 56, 801 (1952); J. chem. Physics
61, 20 (1964).

47. — Person, W.B.: Ann. Rev. physic. Chem. 13, 107 (1962).

48. Ewald,P.P.: Ann. Physik 64, 253 (1921).

49. Harris, F. E., Monkhorst, H.J.: Physic. Rev. B2, 4400 (1970).

Prof. Dr. K. Ohno

The Institute for Solid State Physics
The University of Tokyo
Roppongi, Tokyo

Japan



